
OTIC 0
AD-A249 029I lII!! tlif iltl i i lllllII!lll I IIl

On the Rapid Evaluation of Trigonometric Series 37

A. Dutt and V. Rokhtin

Research Report YALEU/DCS/RR-893
March 1992

U)

YALE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

A499 "

/

A group of algorithms is presented generalizing the Fast Fourier Transform to the case of non-
integer frequencies and non-equispaced nodes on the interval [-, The schemes of this paper
are based on a combination of certain analytical considerations with the dsical Fast Fourier
Transform, and generalize both the forward and backward FFTs. Each of the algorithms requires
O(N -log N + N- log(1/e)) arithmetic operations, where - is the precision of computations and N
is the number of nodes. The efficiency of the approach is illustrated by several numerical examples.

On the Rapid Evaluation of Trigonometric Series ..
AD,'94 ll/
! Y Code __

Di3t ad/orela

A. Dutt and V. Rokhlin eoa

Research Report YALEU/DCS/RR-893
%i March 1992

The authors were supported in part by the Office of Naval Research under Grant N00014-89-J-1527
and in part by the National Science Foundation under Grant DMS9012751.
Approved for public release: distribution is unlimited.
Keywords: FFT, Trigonometric Series, Fourier Analysis, Interpolation, Approximation Theory

1 Introduction

Fourier techniques have been a popular analytical tool in the study of physics and engineering
for more than two centuries. A reason for the usefulness of such techniques is that the trigono-
metric functions eiwX are eigenfunctions of the differentiation operator and can be effectively
used to model solutions of differential equations which arise in the fields mentioned above.

More recently, the arrival of digital computers and the development of the Fast Fourier
Transform (FFT) algorithm in the 1960s have established Fourier analysis as a powerful and
practical numerical tool. The FFT, which computes discrete Fourier transforms (DFTs), is
now central to many areas, most notably spectral analysis and signal processing. In some
applications however, the input data is not uniformly spaced, a condition which is required
for the FFT. In this paper we present a set of algorithms for computing more efficiently some
generalizations of the DFT, namely the forward and inverse transformations described by the
equations

N

fj= a(1)
k=O

for j = 0,..., N, where fi E C, ak E C, wk E [-N/2, N/2] and xi E [-ir, r]. Each algorithm
requires a number of arithmetic operations proportional to

N -logN+ N .log(!) (2)

where c is the desired accuracy, compared with O(N 2) operations required for the direct ap-

plication and O(N 3) for the direct inversion.

Remark 1.1 The DFT in "unaliased" form, as described by the equations

N/2-1fj= E ke2,kl (3)
k=-N2

is clearly a special case of (1); the FFT algorithm reduces the number of operations for the
DFT from O(N 2) to 0(N .log N) by a sequence of algebraic manipulations. In the more general
case of (1), the structure of the linear transformation is also exploitable, and the algorithms of
this paper combine certain analytical results with the existing FFT.

The plan of the paper is as follows. We start in Section 2 with some results from analysis and
approximation theory which are used in the design of the algorithms. An exact statement of the
problem in Section 3 is then followed by informal descriptions of the algorithms in Section 4.
In Section 5 we introduce some notation which is used in a set of more detailed algorithm
descriptions in Section 6. Six numerical examples are presented in Section 7 to illustrate the
performance of the schemes. Finally, Section 8 lists some generalizations and conclusions.

2 Mathematical and Numerical Preliminaries

2.1 Elementary Analytical Tools

In this subsection we summarize some well-known results to be used in the remainder of the
paper. Lemmas 2.1 and 2.2 are obvious, and Lemmas 2.3 and 2.4 can be found, for example,
in [3].

Lemma 2.1 For any real c,
2ir e'cxdx 2 sin(cr).

(4)
_'r C

Lemma 2.2 For any integer k,

1 eikxdx { 1 ifk=O
(5)ei27r f= 0 otherwise

Lemma 2.3 For any real b > 0 and complex z,

e -b 2 .ezzdx = ez2 (6)

Lemma 2.4 For any real b > 0 and a > 0,

fae e - ha2

J Oe-bz-dx < 2b-' " (7)
la 2ba

Proof. be-bx2 dx = 0e-b(x+a)2 dx < e - ha2 e-2bazdx e- ba
(8)Faf o2ba"(8

2.2 Relevant Facts from Approximation Theory

The principal tool of this paper is a somewhat detailed analysis of Fourier series of functions
: [-7r, r] - C given by the formula

qO(x) = e -b , 2 ei= (9)

where b > and c are real numbers. We present this analysis in the Lemmas and Theorems of
this subsection, numbered 2.5-2.10.

Lemmas 2.5 and 2.6, provide two inequalities which are used in Theorem 2.7. Theorems 2.7-
2.9 are intermediate results leading to Theorem 2.10, which explains how to approximate func-
tions of the form ei =- using a small number of terms, and is the principal result of this section.
For all approximations we derive error bounds which allow us to perform numerical computa-
tions to any specified accuracy.

2

Lemma 2.5 For any real b > , c and any integer k,

12 J00e-b. 2 cos((c - k)x)dx + e- e'(c-k)xd < 2ire-_2 . (1+). (10)

Proof. Using the triangle inequality and Lemma 2.4 we have

2 -cos((c - k)x)dx + e- b 2 ei(c-k)zdx < 2 1 e_b, 2 dx + 2re-b,,2

< 27e i +1) 1)<0

Lemma 2.6 For any real b > , c and any integer k,

2 J e X2 cos((c - k)x)dx + e- ei(-k)xdx 8breb - k) 2 + ;). (12)

Proof. Integrating by parts we have

2 e- 2 .cos((c - k)x)dx

2 e -b_ 2 sin((c - k)x)] + 4b xe - 2 sin((c - k)x)dx (13)c -k 7

- 2 ebk 2 sin((c - k)I) 4 b F xe bz2 sin((c - k)x)dx.

After rearranging the terms in (13) and integrating by parts again we obtain

2 0e- b2cos((c-k)x)dx+ -_-k sin((c - k)r)

4b 00 xe - bx2 sin((c - k)x)dx

4b xe-bX? LUcs(- k5)x)J0 - 0(1- 2bX)e-b, cos((c - k~~x (14)
(c-k)2 I k)

(b (re b2 + j e b 2 dx + f x. 2bxe-b 2 dx)

4b (c-k) (~b~2 + 00e- b=2 dx + xe x 0+ 00e bz2 d)
< (c--72

3o

Finally, due to (14) and Lemmas 2.1 and 2.4 we have

-b2 b,., 2
[7i(c-k < 4be-'W 212 Zo e cos((c - k)x)dx + e- e()zdx c- k).- ----

8bbre-b'r 1) (15)

< (c -k)2 T

0

The following theorem provides an explicit expression for the coefficients of a Fourier series
which approximates functions of the form (9).

Theorem 2.7 Let O(x) = e-b-2ei for any real b > , c. Then, for any z E (-r, 7),

O4x) - E pke ikx < e-b7r2 .(4b + 9 (16)
-o

where
Pk -1 e-(c-k) 2/4b (1

2Vr (7)
for k = -oo,..., oo.

Proof. We denote by ak the k-th Fourier coefficient for €, so that for z E (-r, 4),
Co

O(x)= ake, (18)
k=-oo

and due to Lemma 2.3 and equation (17) we have

1 7r i
r=k - j (x)e-idx

2 0 e-bX2 eiCXe-ikxdx -T e-bx2 ei=e-ikxdx - j e-bx2eize-ikkdx)

12 f00
S • e - (c- k)2/4 b + e-bX2 -icz+ikdx - e-bX2+ic-ikzdx (19)2 r

1Pk e- 2 cos((c - k)x)dx.

Rearranging equation (19) and applying Lemmas 2.5 and 2.6 we obtain the inequalities

U- Pk -2 r e iCX e-ikxdx < e- b~r2 + ,(20)

r f 2 7r 1 < -
C Pk -e bjr2 're tce -kxdx < .b-bF (1 (21

2z__ f
t

+b72-

4

and it now follows from the combination of (18), (20) and (21) that, for any x E (-r,7r),

O(X) -=E pkeix _e-b r2 e Ic

kc-k>3 -k) 2 kE-k<3

<0 1 - W 10< b- 8 .2E +e 9
k=3

Some elementary analysis yields

00 1 0 dx 114 (23)

k=3

and substituting (23) into (22) we have

X(x) - E pke - e - blr2 •e i= < e - b 2 .•4b + 0). (24)
k=-oo

To complete the proof we make use of the triangle inequality and (24) to obtain

E pke O(X) - E Pe eb7r2 .ei + le - b .' CX' I

k=-oo k=-oo

< e-6r2 .(4b+ 70). (25)

Remark 2.1 According to Theorem 2.7, functions of the form e-bx2 ei can be approximated
by a Fourier series whose coefficients are given analytically, and the error of the approximation
decreases exponentially as b increases.

Remark 2.2 The coefficients Pk as defined by (17) have a peak at k = [c], the nearest integer
to c, and decay exponentially as k - ±oo. We keep only the q + 1 largest coefficients, where
the integer q is chosen such that

q 4bnr, (26)

so as to satisfy the inequality
e - (q/2) 2 /4b < e 2 . (27)

The following theorem estimates the truncation error under the conditions of Remark 2.2
and thus provides a way of approximating functions of the form (9) by a q-term series.

Theorem 2.8 Let O(x) = e- bx2 ei for any real b > 1, c, and let q be an even integer such
that q > 4br. Then, for any x E (-r, r),

[c]+q/2

O(X) - E pkeikx < e-b'2 .(4b + 9), (28)
k=[c]-q/2

where {Pk} are defined by (17).

Proof. For any x E (- r, r),

(CJ+q/2
00owj -Peikz <5 OW - ~ Pke ikx + Pk pkx +k ~ ikx (29)

k[]12k00k>[c]+q/2 k<[c]-q/2

Due to (17) and the triangle inequalty we have the inequalities

pkekx : 00 e-(ck) 2/4b 00 _k2/4b (30)P~e'k -< 2VZ- < E e (0
k>[c]+q/2 k=lc]+q/2+1 k=q/2

[c]-/2 -1 e-_(-k)2/4 b 00 e-k2 /4b

E Pkek < E E (31)k<[cl-q/2 k=---o 2 vfi "q/

Some elementary analysis and an application of Lemma 2.4 yields
ek 2/4b < e - (q/2)2 /4b +J e- 2/4bd < e-(q/2)2 /4b . 1+ 4b(32)

k=q/2 /2 2/

and it follows from the combination of (26), (27) and (32) that

k=q/2

Substituting (33) into (30) and (31) we have

Pke kx + p pkeikx < -(+ <e-b,2 10(34)
k>[cj+q/2 k<[cl-q/2 I 9

and finally, substituting (25) and (34) into (29), we obtain

[]+q/2 ik x br
2 70 10 e

- pke < e- (4b -9e - 9(4b+ 9). (35)
k=[c]-q/l2 I

The following corollary describes a scheme for approximating ei using a series of q terms.

6

Corollary 2.9 Suppose that m > 2 is an integer and that the conditions of Theorem 2.8 are
satisfied. Then, multiplying both sides of (28) by ebz 2, we obtain

I t.[-]+q/2I

e=- ebx2 .Zc+/ pk < ebx2 . e-bj 2
.*(4b +9)

k=[]-q/2

< e b 2/ r 2
. e - 2

. (4b + 9) (36)

for any x E in m

Finally, Theorem 2.10 makes use of a simple linear scaling to generalize the inequality (36)
from [--,-] to any interval [-d,d].

Theorem 2.10 Let b > , c,d > 0 be real numbers, and let m > 2, q _ 4br be integers. Then,
for any x E [-d, d],

[(c. d/ir]+q/2

e - eb(x /md) 2 E pkeikxir/md < e- b (1/r 2) . (4b + 9) (37)
k=[cmd/ir]-q/2

where {Pk} are defined by (17).

Remark 2.3 The estimated error bounds obtained in the above theorems are rather pes-
simistic. Numerical estimates for the actual errors can be found in Appendix A to this paper.

3 Exact Statement of the Problem

In the remainder of this paper we will operate under the following assumptions:

1. w = {w0 ,. . .,WN} and x = {XO,. . .,XN} are finite sequences of real numbers.

2. Wk E [-N/2,N/2] for k 0,...,N.

3. xj E [-7r,7r] for j = 0,...,N.

4. ae = f{CIO,... , aN}, f = f-N/2,''',)fN12}, 13 = 0-N12,....,I0N12}, g = 190,.--,N},

_Y = {70,..., .N} and h = {ho,..., hN} are finite sequences of complex numbers.

We will consider the problems of applying and inverting the matrix of the Fourier kernel and
its transpose, i.e. we are interested in the transformations F, G : CN+1 --+ CN+1 and their
inverses defined by the formulae

N

h = F(a)i = 5 ak . eiwk'27j /N (38)
k=O

N/2

j= G(/3)j = 1 6k 'eik3z (39)
k=-N12

7

Remark 3.1 If xj = -wj -27r/N, then G = F*.

We will also consider the more general transformation H CN+1 C CN+I defined by the
formula

N

h3 = H(y)j- Z 7keik xr (40)
k=O

More formally, we consider the following problems

* Problem 1
Given a, find f = F(a).

* Problem 2
Given 3, find g = G(P).

* Problem 3
Given -, find h = H(7).

9 Problem 4
Given f, find a = F - (f).

* Problem 5
Given g, find 13 = G-(g).

Remark 3.2 We wish to perform all calculations with a fixed relative accuracy e > 0. In the
case of Problem 1, for instance, we are looking for a vector f = {-N/2,.., fI2} such that

IV- fil < (41)
fil -

In this sense, all algorithms described in this paper are approximate ones.

4 Informal Descriptions of the Algorithms

4.1 Algorithms 1, 2 and 3 for Problems 1, 2 and 3

Observation 4.1 According to Theorem 2.10, any function of the form eics can be accurately
represented on any finite interval on the real line using a small number of terms oJ the form
ebx2 . eikx, and this number of terms, q, is independent of the value of c.

The FFT algorithm applies the matrix of the Fourier kernel to arbitrary complex vectors
in O(N log N) operations when {wk} are integers and {xj} are equally spaced in [-7r, 7r]. For
the efficient application of the transformations described by (38), (39) and (40), we relate these
more general cases to the equispaced case of the FFT. Observation 4.1 is used in two ways to
achieve this:

8

To approximate each eiwkz in terms of a q-term Fourier series.

* To approximate the value of a Fourier series at each xj in terms of the values of this series
at the nearest q equispaced nodes.

This interpolation between equispaced and non-equispaced sets of points can thus be per-
formed in O(Nq) operations. The overall complexity of each of Algorithms 1, 2 and 3 will
therefore be O(N log N + Nq) operations.

4.2 Algorithms 4 and 5 for Problems 4 and 5
Here we are interested in applying the complex matrices A- ' and (A*) - 1 to arbitrary complex

vectors where the elements of A are defined by

Ajk = eikz i (42)

for j = 0,...,N and k = -N/2,...,N/2.
We make use of the following two simple observations.

Observation 4.2 The matrix AA* is Toeplitz, and furthermore, its 2N + 1 distinct elements
can be computed using Algorithm 1.

Proof. It is obvious from (42) that

N N

(AA*)jk = e -i ekxl - k (43)
1=0 1=0

which is a function only of (j - k), and is of the same form as (38), the description for Problem
1. 0

Observation 4.3 From elementary matrix identities we see that

A- ' A*(AA*) -1 (44)
(A-)-' =_(AA*)-'A. (45)

The Toeplitz matrix AA* can be applied to arbitrary vectors in O(NlogN) operations
using an FFT-based discrete convolution. (AA*) - l can therefore be applied to a vector in
O('(A) . N log N) operations using the conjugate gradient method where K(A) is the condition
number of A.

Observation 4.4 As application of A* and A are O(N log N + Nq) procedures using Algo-
rithms 1 and 2, A- 1 and (A*) - 1 can be applied in O(K(A) . NlogN + Nq) operations due to
Observation 4.3.

Remark 4.5 It is well known that the condition number of A is 1 if the points {x} are equally
spaced. While the condition number deteriorates as the distribution of points becomes more
non-uniform, in many cases of practical interest the points will be fairly uniformly spaced, so
the condition number will not be very large.

9

4.3 Algorithm 6 for a Variant of Problem 5

The following lemma describes a way of computing the coefficients of an N-term Fourier series
which is tabulated at N points.

Lemma 4.1 Suppose that the N + 1 function values go,... ,gN are given by the formula

N/4
gj = E A. e'j, (46)

k=-N/4

and the vector S = {So,..., N} is the unique solution of the linear system described by the
equations

N eikxi= { i= (47)
j -e 0 otherwise (7

for k = -N/2,. . .,N/2. Then, for k = -N/4,. .. ,N/4,

N

Ok = S"g "e-k . (48)
j=0

Proof. Substituting for gj from (46) we have for k = -N/4,..., N/4

N N N/4

E .c-g.e'-'j = E " .e-ikx, . E " e~' (49)
j=O j=0 l=-N/4

N/4 N

E p1.E j. ei(C-k)x (50)
l=-N/4 j=0

= Ok. (51)

0

Remark 4.6 According to (47) and Lemma 2.2,
N 7r

ES.ek i =i 1 12 eikxdx (52)

for k = -N/2,...,N/2. Thus, the set of numbers {45} can be considered as weights which
integrate exactly all N-th order trigonometric polynomials at the nodes {xi}.

Observation 4.7 Rewriting (47) in matrix notation we see that

ATc = (0,...,0, 1,0,..., 0)T = A*6 (53)

where Ajk = eikzi, so the vector S is real, and can be computed using the algorithm for Problem

4 as introduced in Section 4.2.

10

Observation 4.8 Equation (48) is of the same form as (38). Thus, provided the r".ctor is
known, the vector , can be computed in O(N log N + Nq) operations using the algorithm for
Problem 1 as introduced in Section 4.1.

Remark 4.9 According to Observation 4.8, if a function described by an N/2-term Fourier
series is tabulated at N arbitrary nodes, the N/2 coefficients can be obtained in O(N log N+Nq)
operations.

Also, due to Observations 4.7 and 4.4, the precomputation of the numbers { j} needed for
this algorithm requires O(rK(A) .N log N + Nq) operations.

5 Notation

In this section we introduce the notation to be used in the detailed descriptions of the algorithms
in the next section.

For an integer m > 2 and a real number b > 0, we will define a real number E > 0 by

= e - b
r
2 (1 -

1/M
2) . (4b + 9), (54)

and we will denote by q the smallest even natural number such that

q > 4br. (55)

For an integer m and a set of real numbers {W} we will denote by Pk the nearest integer
to mwk for k = 0,..., N, and by {Pk} a set of real numbers defined by the formula

P-k = 1 • e - (mk - (
,
u k+ j))2 /4b (56)

for k = 0,...,N and j = -q/2,...,q/2.

Observation 5.1 Setting d = r in Theorem 2.10 we see that

q/2

eiwkX - eb(x/ 4)2 " Pjk ' (u + j x/m < E(57)

for any k = 0,. . ., N and any x E [-7r, 7r], where - is defined by (54).

For a given set of complex numbers {ak}, we will denote by {rj} the unique set of complex
coefficients such that

N q/2 mN/2-1

Zk Pk -e'(t k+j)X/m = 7j e (58)
k=1 j=-q/2 j=-mN/2

11

so that
T Z -k. Pjk. (59)

,k,.k+j=l

We will denote by {Tj} a set of complex numbers defined by the formula

rnN/2-1

Tj= E 7k e27ri k j/mN (60)
k=-mN/2

for j = -mN/2,...,mN/2- 1.
Further, we will denote by {fj auother set of complex numbers defined by the formula

fj = e Tj (61)

for j =-N/2,...,N/2.

Observation 5.2 Combining (57) - (61) with the tr'angle inequality, we see that

N

If - f]i <E 1" lYkkI (62)
k=O

for j = -N/2,..., N/2, where {f3
= F(a)j] are defined by (38).

For an integer m and a set of real numbers {xj} we will denote by v3 the nearest integer to
xjmN/27r for j = 0,..., N, and by {Qik} a set of real numbers defined by the formula

Qjk = 1 • e-(xjmN/2--(Pj+k)) 2/4b (63)

for j = 0,...,N and k = -q/2,...,q/2.

Observation 5.3 Setting d = N/2 in Theorem 2.10 we see that

q/2

eikxj - eb(27rk/mN) 2 . E Qjk " i('v j +l)2rk/mN < 6 (64)
1=-q/2

for any j = 0,..., N and any k E [-N/2, N/2], where E is defined by (54).

For a given set of complex numbers {1k}, we will denote by {uk} a set of complex numbers
defined by the formula

Uk = $k" eb(27r k imN)2 (65)

for k = -N/2,..., N/2, and by {U} a set of complex numbers defined by the formula

N/2

U- E Uk• e 2 rikl/mN (66)

k=-N/2

12

for I =-mN/2,..., mN/2 - 1.
Further, we will denote by {~,} another set of complex numbers defined by the formula

q/2

= Z QjI-'~+ (67)
1=-q/2

for 0 , . N.

Observation 5.4 Combining (64) -(67) with the triangle inequality, we see that

N

Ig3 - j.I < ZIN 1I (68)

for j = 0, .. ., N, where f{g1 = G(13),} are defined by (39).

For a set of real numbers {xj} we will denote by itb the nearest integer to x3N/2~r for
j = 0,. .. , N, and by {Rjk} a set of real numbers defined by the formula

Rjk = 1 -/ e-(xiN/21r(,7+k))/4b (69)

for j = 0, . .. , N and k = -q/2,. .. , q/2.

Observation 5.5 Setting d =N/2 in Theorem 2.10 we see that

q/2

e ikxi/m - eb(27rk/mN) 2 Z Rik e(i(+1)27rk/mN < e (70)

for any j = 0, . .. , N and any k E [- N/2, N12] where E is defined by (54).

For a given set of complex numbers {7kA}, we will denote by {v1} the unique set of complex
coefficients such that

N q/2 mN/2

E'Yk Z Pik* ei(hsk+j)x/m E vj- (71)
k=O j=-q/2 2 =-mN/2

so that
VI -Yk Pik- (72)

~Ve denote by {Vg} a set of complex numbers defined by the formula

mN/2 (rkMN2.2rk/N
V, E Vk - eb(~/ 2) e~L/ 2 (73)

k=-mN/2

13

forlI= -m 2 N/2,..., M2 N/2 -1.
Further, we will denote by {h}another set of complex numbers defined by the formula

q/2

hj eb(-,/_) 2 . 1:RlV7+ (74)

for j=O0,...,N.

Observation 5.6 Combining (57) and (70) - (74) with the triangle inequality, we see that

N

k=O

for j = 0,.. ., N, where f{hi = H(7i)j} are defined by (40), and

6 =2e-bir2 (1-2/m2) . (4b + 9). (76)

For a set of real numbers f{xi}, A will denote a complex matrix whose elements are given
by

Ajk = e ikxa (77)

for k = -N12,.. ., N12 and j = 0, .. ., N, and a a-N, . .. , aN} will denote a set of complex
numbers defined by the formula

N
ak = Zek3 (78)

3=0

Finally, ={ ,.. N1will denote a real vector defined by

= A*)-(O,..,0 1,0...,)T.(79)

Remark 5.7 It is clear from Observation 4.2 that

(AA*)jk =aj-k. (80)

14

6 Detailed Descriptions of the Algorithms

This section contains step by step descriptions and operation counts for the six algorithms of
this paper. In the tables below we will make use of the facts that q - log(.) and m2 < N.

Algorithm 1.
Step Complexity Description

Init O(Nq) Comment (Input parameters are the vector Iwo,... ,WN} and a
real number E > 0.]

Choose b and q in terms of e
do k = 0, N

Determine /1 k, the nearest integer to rnwk

do j = -q/2, q/2
Compute Pk according to (56)

end do
end do
do j = -N/2, N/2

Compute eb(2-r j / mN)
2

end do

O(Nq) Comment [Input parameter is the vector {ao,. .. , apj}.]

Comment (Compute Fourier coefficients rj.]

do k = O,N

do j = -q/2,q12
rk+j '- 'rp+j + Pk * Ck

end do
end do

2 O(mNlogN) Comment (Evaluate this Fourier Series at equispaced points in
[-mir, mir] using inverse FFT.]

Compute Tj = e,-N 2 rk for j = -mN/2,..., mN/2 - 1.

3 O(N) Comment [Scale the values at those points which lie in [-r, nr.]

do j = -N/2, N/2
j = Ti" eb(2,i/mN)

2

end do

Total O(N .log(!) + mN log N)

15

Algorithm 2.
Step Complexity Description

Init O(Nq) Comment [Input parameters are the vector {xo,..., XN} and a
real number - > 0.]

Choose b and q in terms of
do j = O,N

Determine vi, the nearest integer to ximN/2r
do k = -q/2,q/2

Compute Qjk according to (63)
end do

end do
do k = -N/2,N/2

Compute eb(27rk/mN)
2

end do

O(N) Comment [Input parameter is the vector {P-N/2,..,N2}
Comment [Compute new, scaled Fourier coefficients.1

do k = -N/2, N/2
Uk = lk eb(27/mN)

2

end do

2 O(mN log N) Comment [Evaluate this Fourier Series at equispaced points in

1-r, 7r] using inverse FFT.]

Compute Uj = =-N/2 Uk . e27riki/mN for j = -mN/2,. . ., mN/2 - 1.

3 O(Nq) Comment [Compute approximate values at desired points in
terms of the values at equispaced points.]

do j = O,N
do k = -q/2,q/2

§j - §j + Q k
end do

end do

Total 0(mN.logN + N-log(!))

16

Algorithm 3.
Step Complexity Description

Init O(Nq) Comment [Input parameters are the vectors {wO,. .. , WN} and
{xo,..., XN} and a real number e > 0.]
Choose b and q in terms of E
do k = 0,N

Determine Pk, the nearest integer to mwk
do j = -q/2, q/2

Compute Pik according to (56)
end do

end do
do k = -mN/2, mN/2

Compute eb(2
7rk/m

2 N)2

end do
do j = O,N

Determine i7i, the nearest integer to xjN/27r
do k = -q/2,q/2

Compute Rjk according to (69)
end do
Compute eb(x

[m) 2

end do

1 O(Nq) Comment [Input parameter is the vector {70,...,. YN}-]

Comment [Compute Fourier coefficients vj.]
do k = 0,N

do j = -q/2, q/2
V,;+ j , Vj,:+j + Pik "1k

end do
end do

2 O(mN) Comment [Scale the coefficients.]
do k = -mN/2, mN/2

Vk +-- Vk - eb(2
r k/m

2 N)
2

end do

3 O(m 2N log N) Comment [Evaluate this Fourier Series at equispaced points in
[-mr, mr] using inverse FFT.]

Compute Vj = .mN/2 Ve2ik/m 2 N for j = -m 2 N/2,. . ., M2N/2 - 1.

17

4 O(Nq) Comment [Compute approximate values at desired points in
terms of the values at equispaced points.]
do j = O,N

do k = -q/2, q/2

e - j+ Rik-V,+k
end do

end do

5 0(N) Comment [Scale the values.]
do j = O,N

end do

Total 0(m 2 N -logN +N .log(1))

Algorithm 4.
Step Complexity Description

Init O(N log N + Nq) Initialization for Algorithm 1.
Initialization for Algorithm 2.
Compute elements {ak} of Toeplitz matrix (AA*)-1 as defined by
(78) using Algorithm 1.

1 O(N log N + Nq) Compute Af using Algorithm 2.

2 0(.(A) . N log N) Compute & = (AA*)- 1 (Af) using Conjugate Gradient algorithm.

Total 0(K (A) .N .logN + N -log(I))

Algorithm 5.
Step Complexity Description

Init O(N log N + Nq) Initialization for Algorithm 1.
Compute elements {ak} of Toeplitz matrix (AA*) - 1 as defined by
(78) using Algorithm 1.

1 O(n(A) . N log N) Compute (AA*)- g using Conjugate Gradient algorithm.

2 O(N log N + Nq) Compute 3 = A*((AA*)-lg) using Algorithm 1.

Total O(K(A) . N . log N + N . log(!))

18

Algorithm 6.
Step Complexity Description

Init O(rn(A) • N log N + Nq) Initialization for Algorithm 5.
Compute as defined by (79) using Algorithm 5.

1 O(N) Compute = jgj for j = 0,..., N.

2 O(NlogN + Nq) Compute = A* using Algorithm 1.

Total O(N .logN + N .log(!))

The storage requirements of an algorithm are also an important characteristic. From the
above descriptions for the initialization steps the asymptotic storage requirements for each
algorithm are of the form

A. N -q (81)

where the coefficient A is software- and hardware-dependent.

7 Numerical Results

We have written FORTRAN implementations of the six algorithms of this paper and have tested
these programs on the Sun SPARCstation 1 for a variety of input data. Six such examples are
presented in this section, one for each algorithm.

Tables 1-6 contain accuracies and CPU timings for the algorithms with computations per-
formed in both single and double precision arithmetic, and the input size N varying between
64 and 4096. In addition, each table contains the CPU times required to solve the same set of
problems via a direct calculation, and Tables 1-3 include timings for an FFT of the same size.
Tables 1-3 also contain the accuracies of the direct single precision calculations.

Two measures of accuracy were chosen for each example. In Examples 1, 2 and 3, these are
defined by the formulae

N

E. max 1f3 -hi / Z ail (82)

and

E2= E Ii - fj2 E Ifil2 (83)
Sj=0 j=

where a is the input vector, f is the result of a direct computation in double precision arithmetic
and f is the result of the computation being considered.

19

In Examples 4, 5 and 6, they are given by

E max I- ajI/ max Ia11 (84)0_<j_<N 10<j<N

and

E2 = x1 j - ajl2EI%12, (85)
Sj=0 j=

where a is the input for a direct double precision computation, and & is the result of applying
the algorithm to the result of this computation.

Remark 7.1 The formulae (82) - (85) measure fairly accurately the errors of all single preci-
sion computations. However, they can only provide rough estimates of the errors produced by
the double precision versions of the algorithms.

Several technical details of our implementations appear to be worth mentioning here:

1. Each implementation consists of two main subroutines: the first is an initialization stage
in which the matrix operators of the algorithm are precomputed and stored, and the
second is an evaluation stage in which these operators are applied. Successive application
of the linear transformations to multiple vectors requires the initialization to be performed
only once.

2. For the single precision versions of each algorithm our choice of parameters was m = 2,
b = 0.5993 and q = 10. For double precision we chose m = 2, b = 1.5629 and q = 28.

3. The algorithms as described in this paper all require an FFT of size proportional to N,
and thus will perform efficiently whenever the FFT does. This restriction on the FFT size
can be removed by means of a simple modification, thereby ensuring that the algorithms
perform efficiently for any choice of N. In our implementations, these changes were made.

4. In the direct methods for Problems 1 and 2, we used the fact that eikxj = (eix)k to
reduce the number of exponential computations from N 2 to N.

5. N 2 exponentials are required in the direct method for Problem 3, and for larger N,
the available memory on the machine is insufficient for the precomputation and storage
of these numbers. The direct implementation we used for this problem computes each
exponential when it is needed.

6. Standard LINPACK Gaussian Elimination subroutines were used as the direct methods
for comparing timings in Examples 4, 5 and 6. Estimated timings are presented for larger
N, where this computation became impractical.

20

Example 1.
Here we consider the transformation F: CN+1 C N+1 of Problem 1 as defined by the formula

N

r(a)j= a k .e i -k '2 wj 1N (86)
k=O

for j = -N/2,...,N/2. In this example, {wo,...,wN} were randomly distributed on the
interval [-N/2, N/2] and {aO,...,aN} were generated randomly on the unit square in the
complex plane defined by the formulae

0 < Re(z) _ 1, 0 < Im(z) < 1. (87)

The results of applying Algorithm 1 to this problem are presented in Tables 1(a) and 1(b).

Table 1(a)

Example 1, Single Precision Computations

N Errors Timings (sec.)
Algorithm Direct Algorithm Direct FFT

E_, E2 E.o E2 Init. Eval.
64 0.175 E-05 0.190 E-05 0.337 E-06 0.811 E-06 0.011 0.003 0.01 0.0008

128 0.973 E-06 0.203 E-05 0.449 E-06 0.162 E-05 0.022 0.006 0.03 0.0015
256 0.113 E-05 0.348 E-05 0.100 E-05 0.374 E-05 0.044 0.014 0.13 0.0034
512 0.138 E-05 0.602 E-05 0.168 E-05 0.769 E-05 0.088 0.030 0.49 0.0078

1024 0.280 E-05 0.128 E-04 0.193 E-05 0.133 E-04 0.174 0.067 1.90 0.0174
2048 0.267 E-05 0.243 E-04 0.424 E-05 0.268 E-04 0.348 0.141 7.47 0.0352
4096 0.551 E-05 0.453 E-04 0.532 E-05 0.565 E-04 0.701 0.323 30.24 0.0846

Table 1(b)

Example 1, Double Precision Computations

N Errors Timings (sec.)
E__ E2 Alg. Init. Alg. Eval. Direct FFT

64 0.495 E-14 0.634 E-14 0.036 0.008 0.02 0.001
128 0.689 E-14 0.104 E-13 0.075 0.017 0.06 0.002
256 0.717 E-14 0.119 E-13 0.148 0.038 0.22 0.005
512 0.306 E-14 0.164 E-13 0.297 0.079 0.84 0.012
1024 0.460 E-14 0.310 E-13 0.600 0.163 3.23 0.026
2048 0.694 E-14 0.625 E-13 1.204 0.342 12.55 0.059
4096 0.129 E-13 0.126 E-12 2.418 0.747 49.69 0.132

21

Example 2.
Here we consider the transformation G : CN+1 _ CN+1 of Problem 2 as defined by the formula

N/2

G) A _ 13 k (88)
k=-N/2

for j = 0,..., N. In this example, {Xo, .. .,xg} were randomly distributed on the interval
[-7r, r] and {-N/2,... -1 3 N/2} were generated randomly on the unit square in the complex

plane defined by the formulae

0 < Re(z) _< 1, 0 < Im(z) < 1. (89)

The results of applying Algorithm 2 to this problem are presented in Tables 2(a) and 2(b).

Table 2(a)
Example 2, Single Precision Computations

N Errors Timings (sec.)

Algorithm Direct Algorithm Direct FFT
E__o E2 E. E2 Init. Eval.

64 0.121 E-05 0.173 E-05 0.237 E-06 0.506 E-06 0.011 0.003 0.01 0.0008
128 0.595 E-06 0.337 E-05 0.362 E-06 0.985 E-06 0.022 0.007 0.03 0.0015
256 0.133 E-05 0.620 E-05 0.233 E-06 0.158 E-05 0.043 0.015 0.12 0.0034
512 0.953 E-06 0.890 E-05 0.828 E-06 0.334 E-05 0.086 0.033 0.46 0.0078
1024 0.164 E-05 0.996 E-05 0.431 E-05 0.523 E-05 0.174 0.067 1.80 0.0174
2048 0.223 E-05 0.156 E-04 0.687 E-05 0.824 E-05 0.345 0.149 7.11 0.0352
4096 0.470 _-05 0.338 E-04 0.759 E-05 0.134 E-04 0.687 0.332 29.03 0.0846

Table 2(b)
Example 2, Double Precision Compuations

N Errors Timings (sec.)

E E2 Alg. Init. Alg. Eval. Direct FFT
54 0.249 E-14 0.814 E-14 0.038 0.009 0.01 0.001
128 0.501 E-14 0.746 E-14 0.075 0.020 0.05 0.002
256 0.418 E-14 0.623 E-14 0.150 0.043 0.18 0.005
512 0.356 E-14 0.831 E-14 0.297 0.088 0.69 0.012

1024 0.793 E-14 0.192 E-13 C.598 0.182 2.72 0.026
2048 0.138 E-13 0.405 E-13 1.192 0.379 10.86 0.059
4096 0.278 E-13 0.904 E-13 2.417 0.816 43.36 0.132

22

Example 3.
Here we consider the transformation H : CN+1 -. C N + I of Problem 3 as defined by the formula

N

H = E k .e Wkxj (90)
k=O

for j = 0,..., N. In this example, {w0,. . . ,Wy } were randomly distributed on the interval
[-N/2, N/2], {Xo,... , XN} were randomly distributed on the interval [-r, 7r] and {-o,. .. , YN}
were generated randomly on the unit square in the complex plane defined by the formulae

0 < Re(z) < 1. 0 < Im(z) < 1. (91)

The results of applying Algorithm 3 to this problem are presented in Tables 3(a) and 3(b).

Table 3(a)
Example 3, Single Precision Computations

N Errors Timings (sec.)
Algorithm Direct Algorithm Direct FFT

Eoo E2 E. E2 Init. Eval.
64 0.111 E-05 0.291 E-05 0.570 E-06 0.707 E-06 0.022 0.007 0.24 0.0008
128 0.204 E-05 0.405 E-05 0.593 E-06 0.145 E-05 0.044 0.015 0.63 0.0015
256 0.127 E-05 0.450 E-05 0.900 E-06 0.296 E-05 0.087 0.032 2.60 0.0034
512 0.181 E-05 0.683 E-05 0.111 E-05 0.490 E-05 0.177 0.067 10.63 0.0078
1024 0.304 E-05 0.176 E-04 0.221 E-05 0.126 E-04 0.352 0.145 43.60 0.0174
2048 0.482 E-05 0.356 E-04 0.260 E-05 0.264 E-04 0.708 0.327 176.75 0.0352
4096 0.734 E-05 0.751 E-04 0.389 E-05 0.530 E-04 1.404 0.702 714.40 0.0846

Table 3(b)
Example 3, Double Precision Computations

N Errors Timings (sec.)
E__ E2 Alg. Init. Alg. Eval. Direct FFT

64 0.222 E-13 0.320 E-13 0.078 0.019 0.21 0.001
128 0.247 E-13 0.370 E-13 0.153 0.041 0.85 0.002
256 0.249 E-13 0.334 E-13 0.305 0.085 3.43 0.005
512 0.145 E-13 0.232 E-13 0.605 0.180 13.62 0.012
1024 0.237 E-13 0.416 E-13 1.210 0.363 54.71 0.026
2048 0.194 E-13 0.795 E-13 2.403 0.774 219.38 0.059
4096 0.411 E-13 0.120 E-12 4.827 1.588 889.04 0.132

23

Example 4.
Here we consider Problem 4 of Section 3. In this example, the numbers {wk} were defined by
the formula

N Nwk- 2+ (k±O .5 + k) N + (92)

for k = 0,...,N, where bk were randomly distributed on the interval [-0.1,0.1]. In addition,
the numbers {a0,..., aN} were generated randomly on the unit square in the complex plane
defined by the formulae

0 < Re(z) <5 1, 0 < Ira(z) _< 1, (93)

and the numbers {f-N/2,. .. , fN12} were computed directly in double precisicn arithmetic ac-
cording to the formula

N

f= ak " e i wk ' 27 iIN. (94)
k=O

The vector f was then used as input for Algorithm 4. Results of this experiment are presented
in Tables 4(a) and 4(b).

Table 4(a)
Example 4, Single Precision Computations

N Errors Timings (sec.)

E. E2 Alg. Init. Alg. Eval. Direct
64 0.492 E-05 0.339 E-05 0.02 0.05 0.36
128 0.154 E-04 0.568 E-05 0.04 0.11 2.78
256 0.424 E-04 0.128 E-04 0.08 0.20 23.0
512 0.809 E-04 0.252 E-04 0.18 0.45 184

1024 0.203 E-03 0.474 E-04 0.36 0.82 1472 (est.)
2048 0.428 E-03 0.979 E-04 0.78 1.91 11776 (est.)
4096 0.106 E-02 0.195 E-03 1.66 4.64 94208 (est.)

Table 4(b)
Example 4, Double Precision Computations

N Errors Timings (sec.)

E__ E 2 Alg. Init. Alg. Eval. Direct
64 0.143 E-13 0.109 E-13 0.07 0.17 0.37
128 0.208 E-13 0.149 E-13 0.11 0.34 2.96
256 0.493 E-13 0.256 E-13 0.20 0.75 23.6
512 0.121 E-12 0.500 E-13 0.48 1.67 189
1024 0.279 E-12 0.926 E-13 0.94 3.55 1512 (est.)
2048 0.593 E-12 0.192 E-12 1.95 7.75 12096 (est.)

4096 0.138 E-11 0.375 E-12 4.02 18.28 96768 (est.)

24

Example 5.
Here we consider Problem 5 of Section 3. In this example, the numbers {xj} were defined by
the formula te aj = -r + 2r" j + 0.5 + j (95)

N+I

for j = 0,..., N, where 3j were randomly distributed on the interval [-0.1, 0.1]. In addition,
the numbers {13-N/2,... , 3N/2} were generated randomly on the unit square in the complex
plane defined by the formulae

0 < Re(z) 1, 0 < Im(z) 1, (96)

and the numbers {go,.... , N} were computed directly in double precision arithmetic according
to the formula

N/2

gjr= O -3k.eikxj. (97)
k=-N/2

The vector g was then used as input for Algorithm 5. Results of this experiment are presented
in Tables 5(a) and 5(b).

Table 5(a)
Example 5, Single P-.ciw1ur, Computations

N Errc - ____ Timings (sec.)

E E 2 IAlg. Init. Alg. Eval. Direct
64 0.212 L-05 0.1)8 E-05 0.02 0.06 0.36

128 0.117 E-04 0.523 E-05 0.04 0.10 2.78
256 0.190 E-04 0.955 E-05 0.09 0.19 23.0
512 0.287 E-04 0.202 E-04 0.19 0.41 184
1024 0.560 E-04 0.376 E-04 0.37 0.83 1472 (est.)
2048 0.106 E-03 0.752 E-04 0.78 1.90 11776 (est.)
4096 0.225 E-03 0.148 E-03 1.66 4.67 94208 (est.)

Table 5(b)
Example 5, Double Precision Computations

N Errors Timings (sec.)
E. E2 Alg. Init. Alg. Eval. Direct

64 0.310 E-13 0.120 E-13 0.06 0.18 0.37
128 0.389 E-13 0.146 E-14 0.10 0.36 2.96
256 0.577 E-13 0.204 E-13 0.24 0.76 23.6
512 0.673 E-13 0.325 E-13 0.47 1.61 189
1024 0.118 E-12 0.817 E-13 0.97 3.54 1512 (est.)
2048 0.19C E-12 0.134 E-12 1.86 7.73 12096 (est.)
4096 0.429 E-12 0.288 E-12 3.93 18.21 96768 (est.)

25

Example 6.
Here we consider the variant of Problem 5 which was described in Section 4.3. In this example,
the numbers {xj} were defined by the formula

Xj = -7r + 27r ji + 0.5 + bj (98)

for j = 0,..., N, where b4 were randomly distributed on the interval [-0.1, 0.1]. In addition,
the numbers {10-N4,..., 'Cv/4} were generated randomly on the unit square in the complex
plane defined by the formu'ae

0 < Re(z) 1, 0 < Im(z) _ 1, (99)

and the numbers f go,..., J/v} were computed directly in double precision arithmetic according
to the formula

N/4
gj= O -ke (100)

k=-N14

The vector g was then used as input for Algorithm 6. Results of this experiment are presented
in Tables 6(a) and 6(b).

Table 6(a)
Example 6, Single Precision Computations

N Errors Timings (sec.)
E._ E2 Alg. Init. Alg. Eval. Direct

64 0.195 E-05 0.174 E-05 0.09 0.004 0.36
128 0.412 E-05 0.286 E-05 0.17 0.007 2.78
256 0.105 E-04 0.913 E-05 0.34 0.014 23.0
512 0.195 E-04 0.147 E-04 0.70 0.031 184
1024 0.474 E-04 0.320 E-04 1.41 0.066 1472 (est.)
2048 0.836 E-04 0.631 E-04 3.05 0.147 11776 (est.)
4096 0.173 E-03 0.135 E-03 7.22 0.330 94208 (est.)

Table 6(b)

Example 6, Double Precision Computations

N Errors Timings (sec.)

_ -_ E2 Alg. Init. Alg. Eval. Direct
64 0.878 E-14 0.762 E-14 0.32 0.008 0.37
128 0.102 E-13 0.981 E-14 0.62 0.018 2.96
256 0.213 E-13 0.180 E-13 1.25 0.039 23.6
512 0.444 E-13 0.376 E-13 2.64 0.083 189

1024 0.679 E-13 0.520 E-13 5.82 0.170 1512 (est.)
2048 0.151 E-12 0.115 E-12 12.37 0.359 12096 (est.)
4096 0.308 E-12 0.232 E-12 27.61 0.766 96768 (est.)

26

The following observations can be made from Tables 1-6 above, and are in agreement with
results of our more extensive experiments.

1. The errors produced by Algorithms 1, 2 and 3 are comparable with those produced by
the corresponding direct methods.

2. The timings for Algorithms 1 and 2 are similar, which is to be expected since Problem 2
is the adjoint of Problem 1. Algorithm 3 is about twice as costly, which is in agreement
with the fact that it is a synthesis of Algorithms 1 and 2.

3. In single precision computations for this particular architecture, implementation and
range of N, Algorithms 1 and 2 are roughly 4 times as costly as an FFT of the same size.
For double precision the ratio is roughly 6. These ratios decrease as N increases.

4. The extrapolated break-even point of Algorithms 1 and 2 is at roughly N = 32 if the
initialization time is ignored. If the initialization time is included, the break-even point is
at N = 256. For Algorithm 3, the break-even points are at N = 8 without initialization
and at N = 32 with initialization.

5. The timings for Algorithms 4 and 5 are similar as expected, since Problem 5 is the adjoint
of Problem 4.

6. The break-even points of Algorithms 4 and 5 are at roughly N = 32. For Algorithm 6,
the break-even points are at N = 32 if the initialization time is taken into account, and
at N = 16 if it is ignored.

7. Algorithms 1 and 2 tend to be slightly more accurate than their inverses, Algorithms 4
and 5.

8. The initialization for Algorithm 6 is computationally costly, but subsequent evaluations
require much less CPU time than evaluations for Algorithm 5.

Remark 7.2 The CPU timings for Algorithms 1, 2 and 3 are independent of the particular
distributions of w and x, whereas the timings for Algorithms 4 and 5 are sensitive to the
distributions of these vectors.

27

8 Generalizations and Conclusions

The results of this paper can be generalized in the following ways:

1. Simple mrodifications to Algorithms 1, 2 and 3 will allow the efficient application of the
linear transformations F1 , G1, H1 : CN+l -- CM+ I defined by

N

F(= ' k "eiW k'21r /M for j = -M/2,... ,M/2, (101)
k=O

N/2

G, = Pk-e ik.T for j =0,...,M, (102)
k=-N/2

N

H, = 7Tkeikxj for j = 0,...,M. (103)
k=O

These changes have been implemented.

2. The algorithms of this paper also assume that Wk E [-N/2, N/2] and xj E [-ir, 7r]. Other
distributions can be handled by appropriately partitioning the vectors w and x, treating
each partition separately and finally combining the results. The following observation
describes translation operators which can be used for each partition, in combination with
one of Algorithms 1, 2 or 3.

Observation 8.1 Let a, b > 0, c, d > 0 be real numbers and suppose that wk E [a-b, a+b]
for k = 0,...,N and xj E [c- d,c + d] for j = O,...,M. Then we can write

N N

Ea - eiwkx j = e iaxj E ak ei(w ka)c " ei(wA;-
)(zj

-
c) (104)

k=O k=O

N
- iaxi . e (105)

k=O

where

a l = a e i(wA-a)
c ,

=

Wk = (wk - a)d/ir, (106)

S= (x3 - c)r/d E [-7, 7r].

Remark 8.2 Such an algorithm will perform efficiently wbpn the points within a parti-
tion are close together and there are very few partitions, and not so efficiently if the points
are widely separated and there are many partitions. Most cases likely to be encountered
in practice fall in the former category.

28

3. A paper describing a set of algorithms based on a different interpolation technique is
currently in preparation.

4. One of the more far-reaching extensions of the results of this paper is a set of algorithms
for problems in higher dimensions. Investigations into this are currently in progress.

5. The Helmholtz equation in 2 dimensions is given by

V 2 4-0 2qS= 0, (107)

and has particular solutions of the form

O(x, y) = e . ei ' , (108)

where y 2 + v2 = K2. Solutions of this equation consist of linear combinations of such

functions subject to some boundary cond'tions, and the results of this paper admit a
generalization which constitutes a fast Helmholtz solver.

In conclusion, a group of algorithms has been presented for the rapid application and

inversion of matrices of the Fourier k _inel. These problems can be viewed as generalizations

of the Discrete Fourier Transform, and the algorithms, while making use of certain simple

results from analysis, are very versatile, and have wide-ranging potential applications in many

branches of mathematics, science and engineering.

29

Appendix A

In this section we present numerical estimates of the errors in approximating eiCX using q terms
of the form ebx 2 eiIk for the values of m, b and q used by the algorithms. As q is independent
of the choice of c, we only considered the case c = 0. The results are presented in Table 7.

The approximation
q/2

4(X) = e b • pke kx (109)
k-=-q/2

to the constant function O(x) = 1 with pk defined by equation (17) was computed at n = 1000
equally spaced nodes Xk in [-M, -] and the entries in the table are defined as follows:

" Eo is the maximum absolute error defined by the formula

E. = max 1,(Xk) - ¢(Xk)l. (110)
1<k<n

" E 2 is the relative L2 error defined by the formula

E2= /"=1I4$(zk) - (xk)2 (111)
E2 =

* EB is the error bound of Theorem 2.10 defined by the formula

EB = e - b
r

2 (1- 1/M 2) -(4b + 9). (112)

TABLE 7

m b q E2 EB
2 0.5993 10 0.825 E-05 0.176 E-05 0.135 E-00
2 1.5629 28 0.400 E-13 0.580 E-14 0.163 E-03

30

References

[1] G. Dahlquist and A. Bjbrck, Numerical Methods, Prentice Hall Inc., Englewood Cliffs, N.J.,
1974.

[2] A. Dutt, A Fast Algorithm for the Evaluation of Trigonometric Series, Technical Report
841, Yale Computer Science Department, 1991.

[3] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press
Inc., 1980.

[4] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York,
1980.

[5] H. Joseph Weaver, Theory of Discrete and Continuous Fourier Analysis, Wiley, 1989.

31

